In situ crosslinking of a biomimetic peptide-PEG hydrogel via thermally triggered activation of factor XIII.
نویسندگان
چکیده
There is a medical need for robust, biocompatible hydrogels that can be rapidly crosslinked in situ through the use of gentle and non-toxic triggers, which could be used as a surgical adhesive, a bone-inductive material, or for drug and gene delivery. The complete gelation system described here includes calcium-loaded liposomes, hrFactor XIII. thrombin, and an enzymatic substrate based on a four-armed PEG in which each arm terminates with a 20mer peptide sequence derived from the gamma-chain of fibrin. Controlled release of calcium ions for efficient hrFXIII activation was accomplished by thermal triggering of a tailored liposome phase transition at 37 degrees C, which allowed the entire gelation system to be stored in aqueous solution at room temperature without premature gelation. When the system temperature was raised to 37 degrees C (body temperature), the released calcium activates the hrFactor XIII, and gelation was observed to occur within 9 min. Rheological studies performed to quantitatively determine the storage modulus (G') of the gel during oscillatory shear show that it behaves as a robust, elastic solid. Scanning electron microscopy studies revealed the hydrogel to have a very dense morphology overall, however spherical voids are observed in regions where calcium-loaded liposomes were entrapped during gelation.
منابع مشابه
Designing Visible Light-Cured Thiol-Acrylate Hydrogels for Studying the HIPPO Pathway Activation in Hepatocellular Carcinoma Cells.
Various polymerization mechanisms have been developed to prepare peptide-immobilized poly(ethylene glycol) (PEG) hydrogels, a class of biomaterials suitable for studying cell biology in vitro. Here, a visible light mediated thiol-acrylate photopolymerization scheme is reported to synthesize dually degradable PEG-peptide hydrogels with controllable crosslinking and degradability. The influence o...
متن کاملIn situ cell manipulation through enzymatic hydrogel photopatterning.
The physicochemical properties of hydrogels can be manipulated in both space and time through the controlled application of a light beam. However, methods for hydrogel photopatterning either fail to maintain the bioactivity of fragile proteins and are thus limited to short peptides, or have been used in hydrogels that often do not support three-dimensional (3D) cell growth. Here, we show that t...
متن کاملStudy of different methods to induce crosslinking of polyacrylamide for agriculture process
The present study describes two different methods for the preparation of superabsorbent polyacrylamide (PAAm) hydrogels for application in farming of sandy soil. The two methods were employed to induce the crosslinking of the polymer matrix. In the first method a PAAm paste was exposed to gamma rays, while in the second method the polymer was thermally treated in the solid phase. Crosslinked PA...
متن کاملSynthesis and Characterization of an Enzyme Mediated in situ Forming Hydrogel Based on Gum Tragacanth for Biomedical Applications
Background: The excellent biocompatibility, biodegradability and biological properties of the hydrogels, fabricated using natural polymers, especially polysaccharides, are very advantageous for biomedical applications. Gum tragacanth (GT) is a heterogeneous highly branched anionic polysaccharide, which has been used extensively in food and pharmaceutical industries. Despite, its desirable prop...
متن کاملFGF-1 and proteolytically mediated cleavage site presentation influence three-dimensional fibroblast invasion in biomimetic PEGDA hydrogels.
Controlled scaffold degradation is a critical design criterion for the clinical success of tissue-engineered constructs. Here, we exploited a biomimetic poly(ethylene glycol) diacrylate (PEGDA) hydrogel system immobilized with tethered YRGDS as the cell adhesion ligand and with either single (SSite) or multiple (MSite) collagenase-sensitive domains between crosslinks, to systematically study th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biomaterials
دوره 23 13 شماره
صفحات -
تاریخ انتشار 2002